
1240 lEEETWNSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. M~-35, N0. 12, DECEMBER 1987

An Adaptive Spectral Response Modeling
Procedure for Multiport

Microwave Circuits

JIN-FA LEE AND 250LTAN J. CENDES, MEMBER, IEEE

M.vtracf —An adaptive scheme is proposed to generate the spectral

response of waveguide junctions in minimum computation time. The

procedure uses the newly developed transfinite element method to deter-

mine the fields in junctions at a, few adaptively selected frequencies and

then employs these solutions to generate the spectral response throughout

the frequency range of interest. In typical problems, the method converges

in five or six iterations to the full spectral response evaluated at 100 points.

We show by solving example problems that the new procedure is orders of

magnitude faster than the alternatives.

I. INTRODUCTION

M ICROWAVE CIRCUITS in use today often em-

ploy planar geometries that may be represented

mathematically as a multiport microwave junction. A mul-

t iport microwave junction is, in general, defined as a

structure that consists of an arbitrarily shaped cavity, with

or without dielectrics, and has ports coupling in and out of

the cavity. A number of studies have been made of micro-

wave junction problems [1]–[4]. However, the classical

analyses have been largely confined to networks of simple

shape or of geometry that lends itself to analytical or

semianalytical methods of solution.

The highly complex geometries used in microwave

circuits today makes it necessary to use numerical methods

for analysis. Multiport microwave junctions are solved

numerically in the literature by using one of two ap-

proaches: the eigensolution method [5], [6] and the

deterministic method [7]-[9]. In the eigensolution method,

either the finite element method or the finite difference

method is used to compute the eigenvalues and the eigen-

vectors of the normal modes of the junction, and then

circuit theory is used to determine the circuit parameters

[10]. In the deterministic method, the field solution is

computed at a single specified frequency and scattering

parameters are computed at that frequency only; the entire

process must be repeated to determine the solution at

other frequencies.

While the eigensolution method is mathematically

elegant, it has the disadvantage of requiring the solution of

large matrix eigenvalue equations. Since the solution of
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matrix eigenvalue problems is expensive, recent work has

focused on the deterministic approach, which requires the

solution of deterministic matrix equations only [7], [8].

Recently, Webb [8] has used the finite element method for

the analysis of H-plane rectangular waveguide problems.

In his procedure, a set of boundary value problems is

solved in order to get the field solution at a single frequency

point. Two similar procedures have been developed by

Koshiba. In [7], the boundary element is combined with

modal analysis to solve waveguide discontinuity problems,

and the finite element method is combined with modal

analysis to solve for fields in an H-plane waveguide circu-

lator in [9]. Unfortunately, however, both of these proce-

dures result in nonsymmetric matrix equations that are

expensive to solve.

In this paper, we introduce a new, highly efficient

procedure for modeling multiport waveguide junctions.

The basis of the procedure is the transfinite element method

[11], [12], in which modal basis functions are combined

with finite element basis functions to provide solutions for

open boundary problems. This procedure results in sym-

metric sparse matrix equations that can be solved very

efficiently by using the preconditioned biconjugate gradient

algorithm. Further, we develop a spectral response esti-

mation procedure by which solutions at a few adaptively

selected frequencies are used to generate the full solution

in the frequency range of interest.

Numerical results are given for a T junction, a screen

filter containing metal inserts, and a dielectric filter to

show the validity of the present procedure. A comparison

of the computation times required by the adaptive proce-

dure and by the direct deterministic procedure for the T

junction problem is also presented.

H. FORMULATION

A. The Transfinite Element Method

The structure to be analyzed consists of a cavity coupled

with some rectangular waveguides. The shape of the cavity

and the dimensions of the waveguides are arbitrary, but

the overall structure must be uniform so that the problem

can be approximated by two-dimensional analysis. To

simplify the formulation, we assume that the junction is in

the H plane: problems involving E-plane junctions can be
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(a) (b)

Fig. 1. Transfinite element solution of a microwave T junction at 225

MHz. (a) Real part of the constant E field. (b) Imaginary part.

treated in much the same way. Microwave planar circuit

problems differ in that the electric field is taken to be a

constant perpendicular to the plane of the circuit provided

that effective dimensions are used to account for the

fringing fields.
Consider exciting port 1 by the dominant TEIO mode.

The field over the cavity region 0, and the port regions

extending to infinity must satisfy the Helmholtz equation:

V2E + k2c.E = O

where

k2 = u2cOp0. (1)

Here u is the angular frequency of the excitation, 60 and

p ~ are the permittivity and the permeability of free space,

respectively, and ~, is the relative dielectric constant of the

material.

In the transfinite element method [11], [12], the problem

region is divided into two parts. An interior region Q, of

finite extent and an exterior region file that is homogeneous

and unbounded. Within fili finite element basis functions

are used to approximate the field; in Q, analytical, solutions

of the Helmholtz equation provide a basis set for the field.

Employing both sets of basis functions in’ a variational

procedure and requiring continuity along the boundary

between Q, and Q, gives a symmetric matrix equation that

is solved for the field.

The application of the transfinite element method to

multiport microwave circuits is presented in [12]. h this

procedure, (1) is converted into the matrix equation

([~] -k2[f]+[f])@ =-~+ k2~+$. (2)

where [~] and [~] are complex symmetric matrices, [?] is a

diagonal matr~x, @ is the solution vector, k is the

wavenumber, f and g are known vectors, and 8 has only

one nonzero entry.

With respect to spectral modeling, we note that the

mat rices [S”] and [?] and the vectors ~ and ~ are frequency

independent and can be computed once and stored for any

problem geometry. Only the wavenumber k, the vector $,

and the matrix [~] depend on frequency. However, since

[~] is a diagonal matrix with only L X M nonzero entries,

where L is the number of ports in the circuit and M is the

number of basis functions used to approximate the fields

in each port, it requires very little work to compute [~].

Fig. 1 provides the transfinite element solution of a

microwave T junction at 225 MHz.

B. Spectrum Modeling

In designing microwave components, the frequency

response over a given frequency range is often required.

With the deterministic approach in which (1) is solved at a

given frequency, (2) must be solved N times to get N

points on the spectrum. For problems where the response

changes very quickly, the number of points N used to

generate the spectrum must be large in order to get satis-

factory answers. The adaptive scheme proposed here for

modeling the spectral response is best explained by refer-

ring to Fig. 2. Instead of solving (2) N times, we solve the

matrix equation at a few adaptively selected optimal

frequencies and then use these solutions as basis functions

to generate the entire spectral response.

A preliminary illustration of the procedure is as follows:

In Fig. 2(a), the three-port junction of Fig. 1 is solved by

using the transfinite element method at the two limiting

frequencies indicated by the squares on the horizontal axis.

These two solutions are then used as basis functions to

generate a crude spectral response curve throughout the

region o If interest. This is plotted as solid lines in Fig. 2(a).

Next, wc compute the error in the solution throughout the

frequency range by substituting the crude solution values

into the governing equations for the system and by

evaluating the residual. As explained below, this may be

done very efficiently. We then solve the system once again

using the transfinite element algorithm at the frequency

that gave the maximum residual on the last pass. The new

square in Fig. 2(b) shows the location of this solution as

well as the new spectral response curve computed by using

the three transfinite element solutions as basis functions.

This process is repeated for six iterations in Fig. 2 until the

error in the entire spectral response curve is within accept-

able limits. As is evident from Fig. 2(e), the procedure

converges to the solution given in [4], but as shown below,

in much less computer time.

C. The Adaptive Algorithm

In the eigensolution method, once the set of eigen-

functiorm @, is known, the solution of (2) at frequency o

can be approximated by [5]

n

(3)
,=]

where n is the number of basis functions and a, are

unknown coefficients. Equation (3) is valid since the eigen-

functions of the Helmholtz equation are linearly indepen-

dent and orthogonal. The problem with this approach, as
noted eaml ier, is that it is very expensive to compute these

eigenfun ctions. Note, however, that orthogonality of basis

functions is not required in (3); all that is required is that

basis functions be linearly independent. The basis func-

tions ~, in our case are taken to be the solutions of (2) at n

specif iecl frequencies u,: The purpose of the adaptive selec-
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tion scheme proposed here is to determine those frequen- Since [~], [~], ~~ and ~ are frequency independent, we can

ties u, that will generate the most linearly independent rewrite (4) as

solutions @, as basis functions. The rigorous proof of the

validity of the algorithm is shown in the Appendix. ~a,(u)(;, -k’$, +[?].@,)=-f+k’~+s (5)

Substituting (3) into (2) gives
,=1

where

([sw[m+[id)”, iLa,(w=-f’+k%+8. (4)
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Now applying the method of least-squares to (5) leads to

the following matrix equation for the coefficients a,:

([A]-k’[B]+k’[c]+[D])d= -i+k’G-k’ti-l
(7)

+y,*[y]*[y]i--

Notice that in (8), only the matrix [D] amd the vector ~

depend on the freque}cy cu. The computation time for

evahiating [D] and d for each frequency is negligible

because [~] is a diagonal matrix. Matrix equation (7) is

therefore trivial to set up and it is inexpensive to solve

since it is only of order n.

The residual associated with the frequency OJafter solving

for the coefficients ai( u) is evaluated as follows:

The norm of the residual is given by

/r(ci))/= {f*.? }0”5. (lo)

The entire adaptive solution process is presented in the

flowchart in Fig. 3. First, input the desired frequency

limits Q,, tie and N, the number of equal divisions in the

frequency range to be used. Next solve ~!) at the lowest

frequency to generate the basis function @l, and the auxil-

iary functions ~1, fl. From the basis functions and the

auxiliary functions, compute the components of matrices

[A], [B], [C] and of vectors ~, ~, l?. Then generate N

approximate solutions at the other frequencies and compute

the residual at each frequency to indicate the correspond-

ing error. At the maximum residual, solve (2) again and

add the new solution to the basis set for generating the

spectrum. Repeat the process until the maximum residual

is smaller than the prescribed error tolerance q. I

mSolve (2) at

ma

[A], [B], [C]
Solve (2) at

F,G, H %

i+l

r

t“”+ ‘
h

yes

Compute

[3
[D], d

Solve (7)

Update

r(w; )

Fig. 3. Flow chart of the adaptive spectrat modeling procedure.

III. NUMERICAL RLWULTS

Figs. 3–5 provide examples of spectral response ob-

tained by using the new adaptive spectrum modeling pro-

cedure. The number of modes used in each port to gener-

ate the results is 3 for all of the problems shown. Solutions

of (2) are obtained in the computer program by using the

preconditioned biconjugate gradient method and have rel-

ative residual L2 norms smaller than 1.Oe-5. The error

tolerance q employed is 1.Oe-4. In general, the algorithm

will pick up the highest frequency as the second frequency

point to solve for the basis function. So the figures shown

here are plotted from n =2.

Fig. 2. shows the convergence of the procedure for

modeling the T junction in Fig. 1 throughout the frequency

range of dominant-mode propagation. The number of

frequency points N used was 50, and the frequencies that

are solved for and used as the basis functions in the

procedure are indicated by squares on the axis. As shown

in ,Fig. 2, the procedure converges when n = 6. Comparing

the final adaptively pro&ced spectral response with the

boundar:y element deterministic solution of [7] shows excel-

lent agreement.

The analysis presented here is not limited to dominant-

mode propagation. Fig. 3 shows the spectral response
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Fig. 4 Power transmission coefficient of a metal insert filter for (a) n = 2, (b) n =3, (c) n =4, (d) n =5, and (e) n =6.

computed by the adaptive spectral modeling procedure for solution of a waveguide dielectric filter modeled by
the metal insert filter shown in Fig. 4(a) from 30 GHz to Koshiba and Suzuki [7]. Here we used N = 100 spectral

60 GHz. The number of frequency points used was 100 for points; the total number of solved frequency points was

the plots in Fig. 4(a)–(e), and the procedure terminates in only 5.

six iterations. A comparison of the final spectral response Fig. 6 shows a comparison of the computer time required
with that obtained by the field expansion calculation in by the new procedure and that of the deterministic ap-
[13] is given in Fig. 4(e). Fig. 5 presents the adaptive preach. The time for the deterministic approach is based
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on the total time needed to solve (2). The times reported

are for the T junction problem using a DEC VAX 11/780

computer; the matrix size was 500 by 500.

IV. CONCLUSIONS

A very efficient procedure for determining the spectral

response of microwave circuits has been developed. The

procedure may be applied to waveguide junctions involv-

ing either E-plane or H-plane discontinuities or to micro-

wave planar circuits. The spectral response evaluation

procedure employs the transfinite element method to solve

for the field at a few adaptively selected frequencies and

then ccmstructs the solution at any frequency by using the

compu Led solutions as basis functions. In typical problems,

only five or six transfinite element solutions are required

to converge to the full spectral response evaluated at 100

points throughout the frequency range of interest.
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In the past, there were two basic alternatives to comput-

ing the spectral response of microwave circuits: one could

employ the eigensolution approach, which required expen-

sive eigenvalue problems to be solved but gave solutions at

in-between frequencies very economically, or one could

employ the existing deterministic approach, which provid-

ed solutions at a specified frequency relatively efficiently

but had to be reapplied at every frequency of interest. The

new spectral response modeling procedure combines the

advantages of both approaches and gives the full spectral

response in orders of magnitude less computing time than

the alternatives.

APPENDIX

THE LINEAR INDEPENDENCE OF ADAPTIVELY

SELECTED BASIS FUNCTIONS

Consider the linear system

A(U) X( W)= Y(Q) (Al)

where A(Q) is a linear operator, Y(o) is the forcing

function, and X(o) is the response, all at frequency O. We

want to be able to evaluate the response at N frequency

points ZJ,,,

A(6+)x(@n)=Y(un), ~=l...~ (A2)

but have only computed the response at M frequencies

0 ?}1>

A(ti,n)$m=Y(tim) (A3)

where M< N, {CJW} g {u,,}, and $~ = X(u~). We wish to

use the solution @w to evaluate the response at the

frequencies 0,,,

X(u.) = 5 a.,~,. (A4)
m-1

with a unique set of coefficients a ~.
Corresponding to equation (A4) there will be residual

r“(@,,) =A(Qn)xa(on)-y(~n)

= ~ am,A(ti~)$~-Y(ti~). (A5)
~=1

In the method of weighted residuals, we multiply (A5) by

@~{A‘{(u,,), where ~ denotes the Hermitian and require that

the residual r ~(ti. ) be orthogonal to the { A(u~)@ti } so

that the left-hand side vanishes. This yields a matrix

equation for the coefficients a~:

B(un)d=j (A6)

where

Bk,n = I$;A~(tiH)A(tim) @,n

Yk=4@H(%)Y(%). (A7)

The validity of equation (A4) is established by the follow-

ing theorem.

Theorem: Provided that the frequencies am are selected

at points Oti, = afl such that Ir‘( tin ) I # O, the functions @n,
m=l,. ... M +1, will be linearly independent.

Proofi The proof is by induction:

1) The first function +1 is linearly independent except

in the trivial case.

2) Assume that after M steps, M independent basis

functions { +~ } exist so that (A4) is valid. Then because of

the independence of the basis functions, the matrix B is
positive definite and nonsingular and the coefficients am
are uniquely determined.

3) We now show that under the conditions of the

theorem, the basis function +~+ ~ is independent of the set

of functions { +~ }. There are two possibilities: either the

norm of the residual Ir’( Qn)[ in (A5) is zero or it is

nonzero. If it is zero, then the response +. is linearly

dependent on the { I$m} and cannot be used as the next

basis function.

Now suppose that Ir ‘(on) I # O so that we determine

4zM+1 by Solving (Al) at the frequency Wn:

A(%)4%+l=y(%). (A8)

By definition, the functions +~ (m= 1,..0, M + 1) are

linearly independent provided that
M+l

~ c#w = O implies that cm= O. (A9)
m=l

Multiplying (A9) by A(u. ) and using (A8) and (A5) yields

1’/+1

~ ~,nA(LJ,,)$zm
/?1= 1

= ; Cw,A(cJ,,)z#z~+ cM+lY(q)
1?1= !

= f c.,A(cIL)z%
I)Z= 1

+C ~+i f amA(u,,)Om-c~+~rM(~.) =0. (Ale)

1?1= 1

However, r ‘(con) is orthogonal to { A( Un)+m} and is

nonzero; thus we conclude that cm = O (m = 1,. ... M +1)

and the proof is complete.

One logical way to select the frequencies u~ is to always

take the one which maximizes 17(tin ) [. This will ensure that

the conditions of the theorem are met. It will also help to

select the most independent basis functions and to resolve

the zero–nonzero tolerance q in the computer.
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