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An Adaptive Spectral Response Modeling
Procedure for Multiport
Microwave Circuits

JIN-FA LEE anD ZOLTAN J. CENDES, MEMBER, IEEE

Abstract —An adaptive scheme is proposed to generate the spectral
response of waveguide junctions in minimum computation time. The
procedure uses the newly developed transfinite element method to deter-
mine the fields in junctions at a few adaptively selected frequencies and
then employs these solutions to generate the spectral response throughout
the frequency range of interest. In typical problems, the method converges
in five or six iterations to the full spectral response evaluated at 100 points.
We show by solving example problems that the new procedure is orders of
magnitude faster than the alternatives.

I. INTRODUCTION

ICROWAVE CIRCUITS in use today often em-

ploy planar geometries that may be represented
mathematically as a multiport microwave junction. A mul-
tiport microwave junction is, in general, defined as a
structure that consists of an arbitrarily shaped cavity, with
or without dielectrics, and has ports coupling in and out of
the cavity. A number of studies have been made of micro-
wave junction problems [1]-[4]. However, the classical
analyses have been largely confined to networks of simple
shape or of geometry that lends itself to analytical or
semianalytical methods of solution.

The highly complex geometries used in microwave
circuits today makes it necessary to use numerical methods
for analysis. Multiport microwave junctions are solved
numerically in the literature by using one of two ap-
proaches: the eigensolution method [5], [6] and the
deterministic method [7]~-[9]. In the eigensolution method,
either the finite element method or the finite difference
method is used to compute the eigenvalues and the eigen-
vectors of the normal modes of the junction, and then
circuit theory is used to determine the circuit parameters
{10]. In the deterministic method, the field solution is
computed at a single specified frequency and scattering
parameters are computed at that frequency only; the entire
process must be repeated to determine the solution at
other frequencies.

While the eigensolution method is mathematically
elegant, it has the disadvantage of requiring the solution of
large matrix eigenvalue equations. Since the solution of
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matrix eigenvalue problems is expensive, recent work has
focused on the deterministic approach, which requires the
solution of deterministic matrix equations only [7], [8].
Recently, Webb [8] has used the finite element method for
the analysis of H-plane rectangular waveguide problems.
In his procedure, a set of boundary value problems is
solved in order to get the field solution at a single frequency
point. Two similar procedures have been developed by
Koshiba. In [7], the boundary element is combined with
modal analysis to solve waveguide discontinuity problems,
and the finite element method is combined with modal
analysis to solve for fields in an H-plane waveguide circu-
lator in [9]. Unfortunately, however, both of these proce-
dures result in nonsymmetric matrix equations that are
expensive to solve.

In this paper, we introduce a new, highly efficient
procedure for modeling multiport waveguide junctions.
The basis of the procedure is the transfinite element method
[11], [12], in which modal basis functions are combined
with finite element basis functions to provide solutions for
open boundary problems. This procedure results in sym-
metric sparse matrix equations that can be solved very
efficiently by using the preconditioned biconjugate gradient
algorithm. Further, we develop a spectral response esti-
mation procedure by which solutions at a few adaptively
selected frequencies are used to generate the full solution
in the frequency range of interest.

Numerical results are given for a T junction, a screen
filter containing metal inserts, and a dielectric filter to
show the validity of the present procedure. A comparison
of the computation times required by the adaptive proce-
dure and by the direct deterministic procedure for the T
junction problem is also presented.

II. FORMULATION

A. The Transfinite Element Method

The structure to be analyzed consists of a cavity coupled
with some rectangular waveguides. The shape of the cavity
and the dimensions of the waveguides are arbitrary, but
the overall structure must be uniform so that the problem
can be approximated by two-dimensional analysis. To
simplify the formulation, we assume that the junction is in
the H plane: problems involving E-plane junctions can be
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Fig. 1. Transfinite element solution of a microwave T junction at 225
MHez. (a) Real part of the constant E field. (b) Imaginary part.

treated in much .the same way. Microwave planar circuit
problems differ in that the electric field is taken to be a
constant perpendicular to the plane of the circuit provided
that effective dimensions are used to account for the
fringing fields.

Consider exciting port 1 by the dominant TE,;, mode.
The field over the cavity region §2, and the port regions
extending to infinity must satisfy the Helmholtz equation:

V2E +k%,E=0
where

(1)
Here w is the angular frequency of the excitation, €, and
po are the permittivity and the permeability of free space,
respectively, and e, is the relative dielectric constant of the
material.

In the transfinite element method [11], {12], the problem
region is divided into two parts. An interior region £, of
finite extent and an exterior region £, that is homogeneous
and unbounded. Within §; finite element basis functions
are used to approximate the field; in 2, analytical solutions
of the Helmholtz equation provide a basis set for the field.
Employing both sets of basis functions in 'a variational
procedure and requiring continuity along the boundary
between {2, and Q, gives a symmetric matrix equation that
is solved for the field.

The application of the transfinite element method to
multiport microwave circuits is presented in [12]. In this
procedure, (1) is converted into the matrix equation

([S1-#K[F1+[3DF=-F+k%+8 ()
where [$] and [7'] are complex symmetric matrices, [9] is a
diagonal matrix, ¥ is the solution vector, k is the
wavenumber, f and g are known vectors, and & has only
one nonzero entry.

With respect to spectral modeling, we note that the
matrices [§ ] and [f" ] and the vectors f and g are frequency
independent and can be computed once and stored for any
problem geometry. Only the wavenumber k, the vector 3,
and the matrix [§] depend on frequency. However, since
[9]is a diagonal matrix with only L X M nonzero entries,
where L is the number of ports in the circuit and M is the
number of basis functions used to approximate the fields
in each port, it requires very little work to compute [¥].

2_ 2
k*=w%ypg.
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Fig. 1 provides the transfinite element solution of a
microwave T junction at 225 MHz.

B. Spectrum Modeling

In designing microwave components, the frequency
response over a given frequency range is often required.
With the deterministic approach in which (1) is solved at a
given frequency, (2) must be solved N times to get N
points on the spectrum. For problems where the response
changes very quickly, the number of points N used to
generate the spectrum must be large in order to get satis-
factory answers. The adaptive scheme proposed here for
modeling the spectral response is best explained by refer-
ring to Fig. 2. Instead of solving (2) N times, we solve the
matrix equation at a few adaptively selected optimal
frequencies and then use these solutions as basis functions
to generate the entire spectral response.

A preliminary illustration of the procedure is as follows:
In Fig. 2(a), the three-port junction of Fig. 1 is solved by
using the transfinite element method at the two limiting
frequencies indicated by the squares on the horizontal axis.
These two solutions are then used as basis functions to
generate a crude spectral response curve throughout the
region of interest. This is plotted as solid lines in Fig. 2(a).
Next, we compute the error in the solution throughout the
frequency range by substituting the crude solution values
into the governing equations for the system and by
evaluating the residual. As explained below, this may be
done very efficiently. We then solve the system once again
using the transfinite element algorithm at the frequency
that gave the maximum residual on the last pass. The new
square in Fig. 2(b) shows the location of this solution as
well as the new spectral response curve computed by using
the three transfinite element solutions as basis functions.
This process is repeated for six iterations in Fig. 2 until the
error in the entire spectral response curve is within accept-
able limits. As is evident from Fig. 2(e), the procedure
converges to the solution given in [4], but as shown below,
in much less computer time.

C. The Adaptive Algorithm

In the gigensolution method, once the set of eigen-
functions V¥, is known, the solution of (2) at frequency w
can be approximated by [5]

(3)

where r is the number of basis functions and a, are
unknown coefficients. Equation (3) is valid since the eigen-
functions of the Helmholtz equation are linearly indepen-
dent and orthogonal. The problem with this approach, as
noted earlier, is that it is very expensive to compute these
eigenfunctions. Note, however, that orthogonality of basis
functions is not required in (3); all that is required is that
basis functions be linearly independent. The basis func-
tions \if, in our case are taken to be the solutions of (2) at n
specified frequencies w,. The purpose of the adaptive selec-
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Fig. 2

Power reflection and transmission coefficients of the T junction in Fig. 1 for (a) n=2,(b) n=3,(c) n=4,(d) n=35,

and (¢) n= 6.

tion scheme proposed here is to determine those frequen-

cies w, that will generate the most linearly independent

solutions ¥, as basis functions. The rigorous proof of the

validity of the algorithm is shown in the Appendix.
Substituting (3) into (2) gives

([S1-&TT+[3])- éa,(w)\if; —frkg+8 (4

" Since [§], [T, /. and g are frequency independent, we can
rewrite (4) as
Loa ()= K +[7]-¥) = - [+ kg +5 (5)
=1

where

i

L,

o
I
~3>
& A

(=1
I

(6)
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Now applying the method of least-squares to (5) leads to

the following matrix equation for the coefficients a,:
([A]-k*[B]+k*[Cl+[D))a=-F+K*G-k*H—-d
(7)

= [91* = K2 (31 - (97 — k20 + ¥[9]%)8.

(8)

Notice that in (8), only the matrix [ D] and the vector d

depend on the frequency w. The computation time for
evaluating [D] and d for each frequency is negligible
because [¥] is a diagonal matrix. Matrix equation (7) is
therefore trivial to set up and it is inexpensive tc solve
since it is only of order n.

The residual associated with the frequency w after solving
for the coefficients a,(w) is evaluated as follows:

—f+kE+8- Y

~

a,(w)(,—k2® +[91%,). (9)

The norm of the residual is given by

|r(@)|= {r*-7}>". (10)

The entire adaptive solution process is presented in the
flowchart in Fig. 3. First, input the desired frequency
limits w,, w, and N, the number of equal divisions in the
frequency range to be used. Next solve (2) at the lowest
frequency to generate the basis function ‘If], and the auxil-
jary functions ¢,, ®,. From the basis functions and the
auxiliary functions, compute the components of matrices
[A4], [B], [C] and of vectors F, G, H. Then generate N
approximate solutions at the other frequencies and compute
the residual at each frequency to indicate the correspond-
ing error. At the maximum residual, solve (2) again and
add the new solution to the basis set for generating the
spectrum. Repeat the process until the maximum residual
is smaller than the prescribed error tolerance 7.
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Fig. 3. Flow chart of the adaptive spectral modeling procedure.
I1I. NuUMERICAL RESULTS
Figs. 3-5 provide examples of spectral response ob-

tained by using the new adaptive spectrum modeling pro-
cedure. The number of modes used in each port to gener-
ate the results is 3 for all of the problems shown. Solutions
of (2) are obtained in the computer program by using the
preconditioned biconjugate gradient method and have rel-
ative residual L, norms smaller than 1.0e-5. The error
tolerance 1 employed is 1.0e-4. In general, the algorithm
will pick up the highest frequency as the second frequency
point to solve for the basis function. So the figures shown
here are plotted from n = 2.

Fig. 2 shows the convergence of the procedure for
modeling the T junction in Fig. 1 throughout the frequency
range of dominant-mode propagation. The number of
frequency points N used was 50, and the frequencies that

"are solved for and used as the basis functions in the

procedure are indicated by squares on the axis. As shown
in Fig. 2, the procedure converges when n = 6. Comparing
the final adaptively produced spectral response with the
boundary element deterministic solution of [7] shows excel-
lent agreement.

The analysis presented here is not limited to dominant-
mode propagation. Fig. 3 shows the spectral response
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Fig. 4 Power transmission coefficient of a metal insert filter for (a) n=2, (b) n=3,(c) n=4,(d) n=3, and (e) n=6.

computed by the adaptive spectral modeling procedure for
the metal insert filter shown in Fig. 4(a) from 30 GHz to
60 GHz. The number of frequency points used was 100 for
the plots in Fig. 4(a)~(e), and the procedure terminates in
six iterations. A comparison of the final spectral response
with that obtained by the field expansion calculation in
{13] is given in Fig. 4(e). Fig. 5 presents the adaptive

solution of a waveguide dielectric filter modeled by
Koshiba and Suzuki [7]. Here we used N =100 spectral
points; the total number of solved frequency points was
only 5.

Fig. 6 shows a comparison of the computer time required
by the new procedure and that of the deterministic ap-
proach. The time for the deterministic approach is based
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Fig 5. Power transmission coefficient of a waveguide dielectric filter for (a) n=2, (b) n=3,(¢c) n=4, and (d) n=35.

0.0 | | ]
| | I X
150 300
FREQ (MHz)
N
©
20000 ————
15000 — — Deterministic
& Adaptive
CPU
(11 seconds)000
5000 —|
L
0= T T T i
0 50 100 150 200

Fig. 6.

approach.

N
(number of frequency points)

Companson of the computer time required to solve a 500 X 500
system using the adaptive modeling procedure with the deterministic

on the total time needed to solve (2). The times reported
are for the T junction problem using a DEC VAX 11 /780
compuler; the matrix size was 500 by 500.

IV. CONCLUSIONS

A very efficient procedure for determining the spectral
response of microwave circuits has been developed. The
procedure may be applied to waveguide junctions involv-
ing either E-plane or H-plane discontinuities or to micro-
wave planar circuits. The spectral response evaluation
procedure employs the transfinite element method to solve
for the field at a few adaptively selected frequencies and
then constructs the solution at any frequency by using the
computed solutions as basis functions. In typical problems,
only five or six transfinite element solutions are required
to converge to the full spectral response evaluated at 100
points throughout the frequency range of interest.
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In the past, there were two basic alternatives to comput-
ing the spectral response of microwave circuits: one could
employ the eigensolution approach, which required expen-
sive eigenvalue problems to be solved but gave solutions at
in-between frequencies very economically, or one could
employ the existing deterministic approach, which provid-
ed solutions at a specified frequency relatively efficiently
but had to be reapplied at every frequency of interest. The
new spectral response modeling procedure combines the
advantages of both approaches and gives the full spectral
response in orders of magnitude less computing time than
the alternatives.

APPENDIX
THE LINEAR INDEPENDENCE OF ADAPTIVELY
SELECTED BASIS FUNCTIONS

Consider the linear system
A(0) X(0) =Y(w) (A1)

where A(w) is a linear operator, Y(w) is the forcing
function, and X(w) is the response, all at frequency w. We
want to be able to evaluate the response at N frequency
points w,,,

A(w,) X(w,) =¥(s,), (A2)

but have only computed the response at M frequencies
(5]

n=1.--N

A(w,) =Y (w,,) (A3)
where M < N, {w,,} € {w,}, and ¢, = X(w,,). We wish to
use the solution ¢, to evaluate the response at the
frequencies w,,

M

X( wn) = Z am(l)m

m=1

(A4)

with a unique set of coefficients a,,. ’
Corresponding to equation (A4) there will be residual

r(w,) = A(w,) X,(0,) = ¥(0,)

= X a,A4(w,)9,~ Y(w,).

m=1

(AS)

In the method of weighted residuals, we multiply (AS) by
¢ AM(w,), where 7 denotes the Hermitian and require that
the residual r™(w,) be orthogonal to the { A(w,)9,,} so
that the left-hand side vanishes. This yields a matrix
equation for the coefficients a,,:

B(w,)a=7 (A6)
where
By =9iA"(0,) A(w,) ¢,
i = kA (w,)Y(@,). (A7)

The validity of equation (A4) is established by the follow-
ing theorem.

Theorem: Provided that the frequencies w,, are selected
at points w,, = w, such that |r(w,)| # 0, the functions ¢,,,
m=1,---, M +1, will be linearly independent.
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Proof: The proof is by induction:

1) The first function ¢, is linearly independent except
in the trivial case.

2) Assume that after M steps, M independent basis
functions { ¢,,, } exist so that (A4) is valid. Then because of
the independence of the basis functions, the matrix B is
positive definite and nonsingular and the coefficients a,,
are uniquely determined.

3) We now show that under the conditions of the
theorem, the basis function ¢,,, , is independent of the set
of functions {¢,, }. There are two possibilities: either the
norm of the residual |r™(w,)| in (A5) is zero or it is
nonzero. If it is zero, then the response ¢, is linearly
dependent on the {¢,,} and cannot be used as the next
basis function.

Now suppose that |r™(w,)|# 0 so that we determine
¢, 1 Dy solving (A1) at the frequency w,:

A(wn)¢M+l=Y(wn)' (A8)
By definition, the functions ¢, (m=1,---, M +1) are
linearly independent provided that
M+1
Y. ¢,$,=0 impliesthat ¢, _=0.

m

(A9)
m=1

Multiplying (A9) by 4(w,) and using (A8) and (A5) yields

M+l

Z CIHA ( wﬂ ) (rbm

m=1
M

Z CnIA(wrz)¢m + CM+1Y(wn)

m=1
M

= Y c,A(0,)d,

m=1

M
+CM+1 Z amA(wn)(r{)m—cMJrlrM(wn) =0 (A]‘O)

m=1

i

However, r™(w,) is orthogonal to {A(w,)®,} and is
nonzero; thus we conclude that ¢,,=0 (m=1,--+, M +1)
and the proof is complete. .

One logical way to select the frequencies w,, is to always
take the one which maximizes |r(w,)|. This will ensure that
the conditions of the theorem are met. It will also help to
select the most independent basis functions and to resolve
the zero—nonzero tolerance 7 in the computer.
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